AMPA receptors gate spine Ca$^{2+}$ transients and spike-timing-dependent potentiation

Niklaus Holbrö1, Åsa Grunditz1, J. Simon Wiegert, and Thomas G. Oertner2

Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland

Edited by Roger A. Nicoll, University of California, San Francisco, CA, and approved August 4, 2010 (received for review April 5, 2010)

Spike timing-dependent long-term potentiation (t-LTP) is the embodiment of Donald Hebb’s postulated rule for associative memory formation. Pre- and postsynaptic action potentials need to be precisely correlated in time to induce this form of synaptic plasticity. NMDA receptors have been proposed to detect correlated activity and to trigger synaptic plasticity. However, the slow kinetic of NMDA receptor currents is at odds with the millisecond precision of coincidence detection. Here we show that AMPA receptors are responsible for the extremely narrow time window for t-LTP induction. Furthermore, we visualized synergistic interactions between AMPA and NMDA receptors and back-propagating action potentials on the level of individual spines. Supralinear calcium signals were observed for spike timings that induced t-LTP and were most pronounced in spines well isolated from the dendrite. We conclude that AMPA receptors gate the induction of associative synaptic plasticity by regulating the temporal precision of coincidence detection.

Correlated activity in connected neurons can trigger long-lasting changes in synaptic strength, in which sign and magnitude of synaptic modifications depend on the relative timing of pre- and postsynaptic action potentials (1–3). Presynaptic activity followed by postsynaptic action potentials generally leads to an increase in synaptic strength (time-dependent long-term potentiation, t-LTP), whereas activity in the reverse order induces long-term depression. Remarkably, the existence of t-LTP was predicted >60 y ago by the Canadian psychologist Donald Hebb as a mechanism for associative learning (4). Although t-LTP is considered a crucial mechanism for activity-dependent modifications of brain circuits, the biophysics of coincidence detection are not fully understood. The required coincidence detector needs to measure the relative timing of postsynaptic action potentials (APs) with respect to the brief glutamate transient in the synaptic cleft with millisecond precision and to convert this temporal measurement into a synapse-specific biochemical signal. Postsynaptic NMDA receptors (NMDARs), due to their sensitivity to both glutamate and membrane depolarization, have been proposed to act as detectors of temporal coincidence. Ca$^{2+}$ influx through NMDARs activates a series of biochemical processes that eventually lead to strengthening of the synaptic connection (5–9). However, there is a striking mismatch between the slow kinetics of NMDARs and the brief time window in which t-LTP can be induced, suggesting that an additional mechanism is necessary to sharpen the timing sensitivity (10–12).

Here we investigate the role of AMPA receptors (AMPArs) during coincidence detection at Schaffer collateral synapses. Modulation of AMPAR currents during coincident activity strongly affected the induction of synaptic plasticity by pairing of pre- and postsynaptic spikes. Furthermore, we visualized NMDAR-dependent calcium signals in individual spines of CA1 pyramidal cells. During pairing stimulation, AMPAR currents gate NMDARs and precisely regulate the amplitude of postsynaptic Ca$^{2+}$ transients at individual synapses. Interestingly, we found the strongest amplification of Ca$^{2+}$ signals in spines that had a high degree of diffusional isolation from the dendrite, an effect that could be reproduced in a NEURON simulation by changing the diameter of the spine neck. We suggest that amplitude and duration of local, AMPAR-driven excitatory postsynaptic potentials (EPSPs) in spines are critical for coincidence detection with millisecond precision.

Results

Spike Timing-Dependent Potentiation of Schaffer Collateral Synapses.

To study the induction of t-LTP, we performed whole-cell patch-clamp recordings from individual hippocampal CA1 pyramidal neurons (Fig. L4). A monopolar glass electrode was positioned close to the recorded cell in situatum radiatum to stimulate Schaffer collaterals (Fig. L4). EPSPs were evoked at 0.1 Hz. To induce t-LTP, we paired a single presynaptic stimulation pulse with a brief burst of three back-propagating action potentials (bAPs) at 100 Hz. Pairing was repeated 120 times at 0.2 Hz. When the EPSP preceded the first bAP by Δt = 6 ms, this protocol resulted in reliable and long-lasting potentiation of the synaptic connection (227% ± 20% of baseline, Fig. 1A). The magnitude of t-LTP was highly sensitive to the exact timing between pre- and postsynaptic activity (Fig. 1C). At Δt = 20 ms, t-LTP was reduced to 144% ± 10% of baseline, and at Δt = 40 ms, no potentiation was observed (95% ± 4%). The NMDAR antagonist dCCP (20 μM) blocked plasticity induction (103% ± 7%, Δt = 6 ms). To test whether t-LTP was dependent on postsynaptic Ca$^{2+}$ signals, we loaded cells with the Ca$^{2+}$ chelator BAPTA (5 mM) through the recording pipette. Chelating intracellular Ca$^{2+}$ completely abolished synaptic potentiation (98% ± 5%, Fig. 1C). These results are consistent with the idea that Ca$^{2+}$ influx through NMDARs provided a trigger signal for the induction of synaptic plasticity. The narrow time window for t-LTP induction, however, was not consistent with the slow unbinding of glutamate from NMDARs (13).

AMPA Receptors Control the Temporal Window for t-LTP Induction.

AMPArs mediate the majority of excitatory synaptic transmission in the vertebrate brain, and changes in the number of postsynaptic AMPARs are considered a major mechanism for the expression of different forms of long-term plasticity, including t-LTP (14). To test whether AMPAR activity is also required for the induction of t-LTP during pairing, we developed a protocol to transiently block these receptors. Bath application of 1 μM NBOX (2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzoquinoxaline -7-sulfonamide, subsaturating concentration) reduced AMPAR currents to 13% ± 2% (Fig. 2A). To test whether AMPAR inhibition was reversible, we washed the preparation with standard artificial (A)CSF while monitoring the

Author contributions: N.H., Å.G., and T.G.O. designed research; N.H., Å.G., and J.S.W. performed research; N.H., Å.G., J.S.W., and T.G.O. analyzed data; and N.H., Å.G., and T.G.O. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data deposition: Data have been deposited with the Model database of NEURON, http://senselab.med.yale.edu/modeldb/ (accession no. 116769).

1N.H. and Å.G. contributed equally to this work.

2To whom correspondence should be addressed. E-mail: thomas.oertner@fmi.ch.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1004562107/-/DCSupplemental.
amplitude of postsynaptic responses. After 40 min of washout, EPSP amplitudes reached similar amplitudes as in control experiments without NBQX application (NBQX, 105% ± 12%; control, 96% ± 16%; Fig. 2 A and B). Having established that a sub-saturating concentration of NBQX could be used to reversibly block AMPAR currents, we tested the effect of partial AMPAR block during pairing of pre- and postsynaptic activity. Reducing AMPAR currents during pairing blocked the induction of t-LTP at all tested time intervals (Fig. 2 C and D), demonstrating that AMPAR function was essential for t-LTP induction. At Δt = 20 ms, significant synaptic depression was observed after washout of NBQX (Fig. 2D). Pharmacological block of AMPAR function could potentially affect the integration of new receptors into the synapse. Therefore, we tested whether we could “rescue” LTP in NBQX by somatic current injection. Clamping the soma to the reversal potential of synaptic currents restored LTP induction in NBQX (Fig. S1), indicating that the essential function of AMPAR during t-LTP induction is indeed to provide depolarization. To further test how amplitude and duration of AMPAR-mediated EPSPs influences the temporal window for plasticity induction, we bath applied cyclothiazide (CTZ) to reduce AMPAR desensitization. Wash-in of CTZ (100 μM) resulted in EPSPs of larger amplitude (229% ± 47% of baseline) and duration (Fig. S2). In the continuous presence of CTZ, we could record stable EPSPs for >50 min (Fig. S2). Next, we paired pre- and postsynaptic activity in the presence of CTZ. At Δt = 40 ms, where no t-LTP was induced under control conditions, pairing in the presence of CTZ induced a lasting increase of EPSP amplitude to 157% ± 55% of baseline (Fig. 2 E and F), indicating that the permissive time window for t-LTP induction was broadened. At Δt = 20 ms, t-LTP was also significantly enhanced (190% ± 18%), whereas at Δt = 6 ms, t-LTP was similar to control conditions (241% ± 36%, Fig. 2F). Taken together, these results demonstrate that AMPARs not only are critical for the expression, but also control the induction of t-LTP.

Spine Ca++ Transients During Pairing Stimulation Are Sensitive to Timing. Most AMPARs on CA1 pyramidal neurons contain GluR2 subunits that render them Ca++ impermeable (15, 16). Thus, their strong effect on plasticity induction was rather surprising. We speculated that AMPARs might gate the Ca++-permeable and voltage-sensitive NMDARs through postsynaptic depolarization. To test this hypothesis, we measured postsynaptic Ca++ signals in single dendritic spines using ratiometric two-photon imaging (17). CA1 pyramidal cells were filled with a mixture of a green Ca++-sensitive dye (Fluo 5F, 600 μM) and a volume-filling red dye (Alexa-Fluor 594, 30 μM). To prevent store-related Ca++ nonlinearities, thapsigargin (10 μM) was added to the ACSF. Individual synapses on oblique dendrites (distance from soma: 90–150 μm) were stimulated by two-photon uncaging of 4-Methoxy-7-nitroindolinyl-caged-L-glutamate (MNI-glutamate, Fig. 3A) (18, 19). To ensure equal stimulation in all experiments, we adjusted the power of uncaging laser pulses to bleach 40–50% of the red dye in the focal plane (Fig. S3) (20). Under these conditions, the amplitude of uncaging-evoked currents (uEPSCs) was comparable to that of miniature EPSCs. Calcium imaging was performed under current clamp conditions. A small (<60 pA) negative holding current was applied in some experiments to keep the somatic membrane potential close to $V_m = -65$ mV. Spine Ca++ transients were measured in response to glutamate uncaging alone, bAPs alone (three bAPs at 100 Hz, as in t-LTP experiments), and uncaging paired with bAPs at three different time intervals (Fig. 3 B and C). Pairing of glutamate uncaging
transients that were considerably larger than expected from a linear summation of the components. We quantified Ca\(^{2+}\) signal amplification by dividing the amplitude of measured Ca\(^{2+}\) transients by the expected Ca\(^{2+}\) transient amplitude (linear summation of components). The amplification factor was highly sensitive to the exact timing of correlated activity (linearity at \(\Delta t = 6\) ms, 165% ± 5%; at \(\Delta t = 20\) ms, 146% ± 6%; at \(\Delta t = 40\) ms, 129% ± 5%, Fig. 3D). In addition, we monitored Ca\(^{2+}\) in the parent dendrite close (<2 μm) to the stimulated spine. In the dendrite, Ca\(^{2+}\) amplification was strongly reduced, indicating that highly supralinear Ca\(^{2+}\) signals were generated locally in the spine heads (Fig. S4). The sensitivity of spine head Ca\(^{2+}\) signals to the relative timing of glutamate transient and postsynaptic depolarization suggested that they could act as an instructive signal for t-LTP.

**Synergy Between AMPARs, NMDARs, and Back-Propagating APs.** To test whether Ca\(^{2+}\) supralinearity was dependent on NMDAR activity, we pharmacologically blocked these receptors by dCPP (20 μM, Fig. 3E). Blockade of NMDARs did not affect the amplitude of uEPSCs, but significantly depressed uncaging-evoked Ca\(^{2+}\) transients (Fig. S5), demonstrating that NMDARs are a major pathway for Ca\(^{2+}\) entry during synaptic activity, but contributed little to postsynaptic depolarization. In pairing experiments, blockade of NMDARs abolished Ca\(^{2+}\) supralinearity only for all tested timings (Fig. 3F), confirming that NMDAR activity was necessary for the conversion of spike timings to supralinear Ca\(^{2+}\) signals of different amplitudes. To test whether direct interaction between NMDARs and bAPs was sufficient to generate supralinear Ca\(^{2+}\) transients, we next blocked AMPARs (NBQX, 10 μM; Fig. 3G). Interestingly, this manipulation strongly reduced Ca\(^{2+}\) amplification at \(\Delta t = 6\) and 20 ms, but had little effect at \(\Delta t = 40\) ms (Fig. 3H). The remaining amplification likely reflects direct unblocking of NMDARs by bAPs, since its timing dependence was weak and consistent with NMDAR kinetics (13). Blockade of AMPARs also strongly reduced the absolute amplitude of uncaging-evoked spine Ca\(^{2+}\) transients, providing further evidence that NMDARs were gated by AMPAR-mediated depolarization during synaptic activity (Fig. S5). Together, these results suggest that NMDARs interact with bAPs to generate supralinear Ca\(^{2+}\) transients and that this amplification is significantly enhanced by AMPARs in the critical window permissive for t-LTP.

**Amplification of Spine Ca\(^{2+}\) Signals Depends on Degree of Isolation from Dendrite.** In previous studies, we and others have shown that spine head depolarization is strongest in spines that are well isolated from the dendrite (21–23). Because the results of our t-LTP experiments suggested that the precision of coincidence detection depends on EPSP amplitude, we expected well-isolated spines to be most sensitive to pairing stimulation. The diffraction-limited performance of our two-photon microscope did not allow resolving the precise geometry of spine necks optically. Instead, we used fluorescence recovery after photobleaching (FRAP) to estimate the diffusional coupling between individual spines and dendrites (Fig. 4A). Indeed, during pairing stimulation at \(\Delta t = 6\) ms, amplification of spine Ca\(^{2+}\) transients was strongest in spines with long FRAP time constants, indicative of weak coupling (Fig. 4B and C). No correlation of Ca\(^{2+}\) signals with FRAP time constants was found for longer pairing intervals (Fig. 4D) or in pairing experiments under AMPAR or NMDAR block (Fig. 4E and F). Because the range of time constants in acute slices was narrow (range: 15–150 ms), we repeated the pairing experiments in hippocampal slice cultures (range: 21–332 ms, Fig. S6). At \(\Delta t = 5\) ms, amplification of spine Ca\(^{2+}\) transients was strongly correlated with FRAP time constants (\(R = 0.681, P = 0.001\)). Consistent with our results from acute slices, there was no correlation at \(\Delta t = 50\) ms in organotypic cultures (\(R = 0.056, P = 0.823\)). These

---

**Fig. 3.** Spine calcium transients during pairing stimulation. (A) Individual spines were stimulated by two-photon glutamate uncaging (white arrowhead). Ca\(^{2+}\) imaging was performed using line scans. (Right) x&t plot during pairing of uncaging (white arrowhead) with three bAPs (yellow arrowheads). Red, Alexa Fluor 594 (morphology); green, Fluo-5F. (B) Spine Ca\(^{2+}\) transients in response to uncaging alone, bAPs alone, and uncaging paired with bAPs at three different time intervals (\(\Delta t = 6, 20,\) and 40 ms). Traces are average responses from spine shown in A. The linear sum was calculated as the sum of the Ca\(^{2+}\) signal evoked by uncaging alone and the signal evoked by bAPs alone. (C) Peak Ca\(^{2+}\) amplitudes in response to uncaging alone, bAPs, or uncaging paired with bAPs (\(\Delta t = 6, 20,\) and 40 ms; n = 18). (D) Ca\(^{2+}\) transient amplitudes for different spike timings normalized by the linear sum. Ca\(^{2+}\) amplification was significantly different for different spike timings. (E) Spine Ca\(^{2+}\) transients with blocked NMDARs (20 μM dCPP, n = 9). (F) NMDAR block abolished Ca\(^{2+}\) amplification during pairing at all tested timings. (G) Spine Ca\(^{2+}\) transients with blocked AMPARs (10 μM NBQX, n = 18). (H) AMPAR block significantly reduced Ca\(^{2+}\) amplification at \(\Delta t = 6\) and 20 ms.
data support the idea that the synergistic interaction between AMPA currents, bAPs, and NMDARs is a local electrical phenomenon that works best in spines that have some degree of isolation from the dendrite.

**Modeling Coincidence Detection with NEURON.** To test our notion that electrical compartmentalization in spines is crucial for coincidence detection, we used a previously published model of a CA1 pyramidal cell spine equipped with AMPA and NMDA receptors and voltage-gated Ca\(^{2+}\) channels (21). Spine channel densities were not modified, but active conductances (Hodgkin–Huxley) were added to somatic and dendritic compartments to simulate bAPs. The model was run with two different spine neck diameters, corresponding to 120 M\(\Omega\) and 1.2 G\(\Omega\) resistances. We monitored Ca\(^{2+}\) currents through NMDARs as well as the membrane potential in the spine head for two different pairings (\(\Delta t = 6\) and 40 ms; Fig. 4G). High Ca\(^{2+}\) nonlinearity (243\%) was found only in the spine with a high resistance neck and only at \(\Delta t = 6\) ms. When we removed AMPARs from the simulation, nonlinearity was reduced to 133\%, consistent with experiments in NBQX (Fig. 4F). The modeling results indicate that electrical compartmentalization in spines can account for the correlation between diffusion time constants and calcium amplification that we observed in our experiments. Furthermore, the model allowed us to inspect the voltage in the spine head and revealed a considerable broadening of the EPSP for \(\Delta t = 6\) ms (Fig. 4G), providing an explanation for the efficient unblocking of NMDARs under these conditions.

**Discussion**

Ca\(^{2+}\) transients in dendritic spines during pairing of pre- and postsynaptic activity are highly nonlinear; i.e., their amplitude exceeds the sum of Ca\(^{2+}\) transients caused by synaptic activation and by back-propagating APs alone (24). We show that these Ca\(^{2+}\) transients depend on simultaneous activation of NMDA and AMPARs and are highly sensitive to the relative timing of glutamate receptor activation and bAP arrival, suggesting that Ca\(^{2+}\) transients encode timing information and could serve as an instructive signal for plasticity induction. In the absence of AMPA receptor currents, Ca\(^{2+}\) signals were still supralinear, but the sharp sensitivity to timing was lost. Interestingly, not all spines displayed the same nonlinear enhancement of Ca\(^{2+}\) influx: Spines that were diffusionally isolated from the dendrite had the highest amplification factor during pairing stimulation, indicating that the precision of coincidence detection is not the same at all synapses. We could reproduce the amplification of Ca\(^{2+}\) currents in numerical simulations where we varied the spine neck diameter to simulate stronger and weaker coupling to the dendrite.

Although the dependence of postsynaptic Ca\(^{2+}\) influx during the EPSP on AMPAR function has been described in previous studies (9, 21, 22, 24), the impact of the AMPA-EPSP on the precision of coincidence detection has not been directly shown. Our Ca\(^{2+}\) imaging data suggest that AMPARs critically boost the nonlinear interaction between NMDAR currents and back-propagating APs in a narrow time window of \(\sim 20\) ms, reminiscent of the sharp window where t-LTP can occur. The effect of the AMPAR-mediated EPSP can be described as a sensitization of the entire spine to additional depolarization: The IV curve of NMDARs for Ca\(^{2+}\) reaches its maximum slope at membrane potentials between \(-50\) and \(-20\) mV (21). CaV2.3 channels, another important source of Ca\(^{2+}\) in spines, have a similar activation curve (25). If a spine head is depolarized to this potential, a brief additional depolarization by a bAP will have dramatic effects on local Ca\(^{2+}\) currents. Milliseconds later, when the AMPAR current is shut off and spine depolarization has decayed, the same bAP is largely ineffective in unblocking NMDARs (Fig. 4G). Recent estimates from voltage imaging experiments have confirmed high-amplitude EPSPs in spines and a steep voltage drop along the spine neck (23, 26). Alternative

---

**Fig. 4.** Correlations between calcium nonlinearity and diffusional coupling of spines. (A) At individual spines, Ca\(^{2+}\) transients during pairing were measured. Before and after pairing, fluorescence recovery after photo-bleaching (FRAP) was used to quantify diffusional coupling. (B) Example of a well-isolated spine. (C) At \(\Delta t = 6\) ms, the amount of Ca\(^{2+}\) signal amplification was correlated with FRAP time constants \((n = 18)\). (D) At \(\Delta t = 40\) ms, no correlation was observed \((n = 18)\). (E) Blocking NMDARs with dCPP (20 \(\mu M\)) abolished Ca\(^{2+}\) signal amplification in all spines \((\Delta t = 6\) ms, \(n = 9)\). (F) Blocking AMPARs with NBQX (10 \(\mu M\)) reduced Ca\(^{2+}\) signal amplification. No correlation with FRAP time constants was observed \((\Delta t = 6\) ms, \(n = 18)\). (G) Modeling coincidence detection in spines with NEURON. In a spine with a low resistance neck (Left), Ca\(^{2+}\) influx through NMDARs is slightly enhanced \((148\%\) of EPSP alone) by three bAPs arriving 6 ms after the EPSP. Traces show the membrane potential in the spine head for pairing at 6 ms (red) and at 40 ms (green). In a spine with high neck resistance (Right), Ca\(^{2+}\) is dramatically amplified at \(\Delta t = 6\) ms (243\% of EPSP alone). The corresponding voltage trace (red) shows significant broadening of the EPSP in the spine head by the first bAP. Removal of AMPARs from the simulation reduces Ca\(^{2+}\) amplification to 134\%.
mechanisms for a narrow t-LTP window, such as boosting of AP back-propagation by inactivation of K⁺ channels, have been proposed (27, 28). However, because AP boosting is thought to require the simultaneous activation of many excitatory synapses and affects coincidence detection mostly in the distal portion of the dendritic tree, it is not likely to have a strong effect under our experimental conditions.

In our experiments, the time window for plasticity induction was narrower than the window for Ca²⁺ supralinearity (Figs. 1C and 3D). However, several factors have to be taken into account when relating optically measured Ca²⁺ signals to plasticity induction. First, the peak amplitude of free Ca²⁺ transients in our imaging experiments was blunted by the addition of Ca²⁺-sensitive dye (29). Under physiological conditions, in the absence of exogenous Ca²⁺ buffer, we expect an even steeper dependence of Ca²⁺ transient amplitude on timing. Because optical Ca²⁺ measurements interfere with the concentration of free Ca²⁺ ions inside the cell and thus affect plasticity induction, we chose to investigate Ca²⁺ transient amplitude and t-LTP in separate experiments. Second, postsynaptic Ca²⁺ transients trigger plasticity through a series of biochemical reactions, and the relation between bulk Ca²⁺ concentration ([Ca²⁺]) and potentiation is known to be nonlinear (30, 31). Compared with the [Ca²⁺] reported by the Ca²⁺-sensitive dye, fast endogenous Ca²⁺ sensors such as calmodulin will sense much higher local [Ca²⁺], close to open NMDARs (32). Dependent on the head volume of each individual spine, these local Ca²⁺ domains will be more or less diluted before we can detect any fluorescence increase in the spine. In accordance, when we compared our electrophysiological and imaging experiments, we found a correlation between spine Ca²⁺ transient amplitudes (ΔG/R) and the amount of spike-timing-dependent plasticity (STDP) induced by the equivalent stimulation protocol (R = 0.859, P = 0.029).

When we considered Ca²⁺ amplification factors rather than absolute [Ca²⁺], the significance of the correlation with STDP increased notably (R = 0.930, P = 0.007, Fig. 5). How could a Ca²⁺-sensing molecule like calmodulin calculate a derived value such as the Ca²⁺ amplification factor? One possibility is that high amplification factors indicate a high degree of NMDAR unblocking during pairing and thus reflect the occurrence of many Ca²⁺ nanodomains in the postsynaptic density, independent of later dilution in the spine cytoplasm. Thus, a Ca²⁺ sensor in the spine would not have to calculate the nonlinearity factor; it simply has to be located very close to the influx channels.

Consistent with previous reports (33, 34), we found that pharmacologically induced changes in EPSP amplitude and waveform altered the permissive window for t-LTP. This result suggests that neurons could actively modify their sensitivity to STDP by changing AMPAR gating properties, for example, by altering subunit composition or accessory proteins (35–37). Consistent with this idea, other channels regulating amplitude and duration of postsynaptic depolarization, such as voltage-dependent K⁺ or Ca²⁺ channels, have also been reported to affect the window for plasticity induction (21, 33, 38, 39). A second endogenous mechanism that is known to affect spine head depolarization is activity-dependent changes in diffusional coupling (18, 21). In spines of both acute slices and organotypic cultures, we found significant correlations between diffusional isolation and the degree of Ca²⁺ nonlinearity (Fig. 4B and Fig. S6), but only for rapid uEPSP-bAP pairings (Δt = 5 or 6 ms).

In spines weakly isolated from the dendrite, we still found some residual Ca²⁺ amplification (20–30%, Fig. S6), similar to spines under AMPAR block (Fig. 3G) and to the weak Ca²⁺ amplification seen in the dendrite (Fig. S4). Residual amplification can be readily explained by direct unblocking of NMDARs by bAPs. In well-isolated spines, we show that a Ca²⁺-sensitive readout mechanism could sense the time lag between synaptic activation and postsynaptic spikes with the required temporal precision (Fig. 4B). Although we do not provide direct experimental evidence, it is quite likely that t-LTP (Fig. 1) was induced primarily at these well-isolated spine synapses. In summary, AMPARs not only mediate the majority of excitatory transmission in the vertebrate brain, but also play a key role in the induction of associative synaptic plasticity. The ability of synapses to measure coincidence with millisecond precision cannot be explained by the gating properties of NMDARs alone, but is a consequence of the strong and confined depolarization of the spine head during the EPSP.

Methods

Slice Preparation. Acute hippocampal brain slices were prepared from Wistar rats (postnatal days 14–19). Horizontal slices (350 μm thick) were cut on a vibriscorer (Leica) in ice-cold solution containing 110 mM choline chloride, 25 mM NaHCO₃, 25 mM HEPES, 11.6 mM sodium ascorbate, 7 mM MgSO₄ 2.5 mM KCl, 1.25 mM NaHPO₄, and 0.5 mM CaCl₂. Slices were incubated at 34 °C for 30 min in oxygenated ACSF, containing 127 mM NaCl, 2.5 mM KCl, 1.25 mM MgCl₂, 2.5 mM CaCl₂, and 1.25 mM NaHPO₄, and then stored at room temperature until use. For whole-cell recordings, the ACSF was supplemented with 10 μM bicuculline and 30 μM serotonin. For uncaging experiments, we added MNI-glutamate (5 mM) and thapsigargin (10 μM) to prevent store-dependent Ca²⁺ nonlinearities. In a subset of experiments, we added NBQX (1 or 10 μM) to block AMPARs, dCYP (20 μM) to block NMDARs, or cyclothiazide (100 μM) to reduce AMPAR desensitization.

Electrophysiology. Current-clamp recordings from CA1 pyramidal cells were performed at 30 °C, using a Multiclamp 700B amplifier (Axon Instruments) and 5–8 MΩ patch pipettes filled with 135 mM K-gluconate, 10 mM Hepes, 10 mM sodium phosphocreatine, 3 mM sodium ascorbate, 4 mM MgCl₂, 4 mM Na₂-ATP, and 0.03 mM Alexa-Fluor 594 (pH 7.2, 295 mOsm). For Ca²⁺ imaging experiments, 0.6 mM Fluo 5F was added to the intracellular solution (Molecular Probes, Kᵢ ~ 0.8 μM). A monopolar stimulation electrode filled with 1 M NaCl was positioned 15–25 μm from an oblique dendrite (150–200 μm from the soma), using laser DIC. A brief hyperpolarizing pulse (0.2 ms, ~2–5 V) was delivered by a stimulus isolator (NIPI Electronics) to stimulate Schaffer collaterals at 0.1 Hz. Recorded pyramidal cells had resting membrane potentials of ~−66 mV ± 1 mV and input resistances of 190 ± 89 MΩ (n = 55 cells). Recordings were discarded if input or series resistance changed by >30% during the experiment. LTP was induced by 120 pairings of a single evoked EPSP with three postsynaptic APs (at 100 Hz) at 0.2 Hz. To compensate for the delay between extracellular stimulation pulse and somatic EPSP, we adjusted the timing of the postsynaptic AP burst for each recorded cell, using the test pulses during baseline to quantify EPSP delay. Compared with the amount of STDP induced by the same protocol (30, 31). Compared with the Ca²⁺ concentration ([Ca²⁺]), the significance of the correlation with STDP increased notably (R = 0.930, P = 0.007, Fig. 5). How could a Ca²⁺-sensing molecule like calmodulin calculate a derived value such as the Ca²⁺ amplification factor? One possibility is that high amplification factors indicate a high degree of NMDAR unblocking during pairing and thus reflect the occurrence of many Ca²⁺ nanodomains in the postsynaptic density, independent of later dilution in the spine cytoplasm. Thus, a Ca²⁺ sensor in the spine would not have to calculate the nonlinearity factor; it simply has to be located very close to the influx channels.

Consistent with previous reports (33, 34), we found that pharmacologically induced changes in EPSP amplitude and waveform altered the permissive window for t-LTP. This result suggests that neurons could actively modify their sensitivity to STDP by changing AMPAR gating properties, for example, by altering subunit composition or accessory proteins (35–37). Consistent with this idea, other channels regulating amplitude and duration of postsynaptic depolarization, such as voltage-
Two ultrafast IR lasers (Chameleon-Ultra, Coherent) controlled by Pockel’s cells (350–800 nm) and uncaging of Mn-glutamate (730 nm). Fluorescence was detected in epifluorescence modes, using four photomultiplier tubes (R3989; Hamamatsu). To measure Ca\(^{2+}\) signals, green (Fluo 5F) and red (Alexa-Fluor 594) fluorescence was collected during 250-Hz line scans across the spine head and its parent dendrite. Calcium imaging was performed in a current clamp. Glutamate uncaging was achieved using a 0.5-ms laser pulse focused –0.5 μm off the spine center, in a direction away from the parent dendrite. Laser intensity was –50 mW measured in the back focal plane of the objective. Fluorescence changes for the different stimulation protocols were quantified as increases in green fluorescence (ΔG) normalized to the average red fluorescence (ΔG/R) (17). Photomultiplier dark noise was subtracted to quantify Ca\(^{2+}\) transient amplitudes for each spine, peak ΔG/R was averaged over 5–10 trials for each stimulation protocol. The linearity of Ca\(^{2+}\) transients was calculated by dividing the peak Ca\(^{2+}\) transient amplitude for a given pairing protocol by the expected peak amplitude (the linear sum) of uncaging-evoked and bAP-evoked Ca\(^{2+}\) transients. Data are reported as mean ± SEM. To test for significance, we used the Mann-Whitney rank sum test or the Wilcoxon signed-rank test at a significance level of P = 0.05.

**Compartmental Modeling.** Our compartmental model of a CA pyramidal cell spine is publicly available at the NEURON model database (http://senselab.med.yale.edu/ modeldb/; accession no. 116769). For a detailed description, see Grunditz et al. (21).

**ACKNOWLEDGMENTS.** We thank D. Gerosa for excellent technical assistance and A. Lüthi and R. W. Friedlich for critically reading the manuscript. This work was supported by the Novartis Research Foundation, SystemsX.ch, and the Gebert Rüf Foundation.

Supporting Information

Holbro et al. 10.1073/pnas.1004562107

**Fig. S1.** Rescue of LTP in NBQX by somatic depolarization. (A) LTP could be induced in the presence of 1 μM NBQX if the cell was voltage clamped to the reversal potential of synaptic currents during pairing (n = 6). During baseline and washout, holding potential was −65 mV. To improve space clamp, a Cs⁺-based intracellular solution was used consisting of 135 mM Cesium methanesulfonate, 10 mM Hepes, 4 mM MgCl₂, 4 mM Na₂-ATP, 0.4 mM Na-GTP, 10 mM Na-phosphocreatine, and 5 mM glutathione. LTP was induced when NBQX wash-in reached steady state by pairing 120 single EPSCs evoked at 0.2 Hz (equivalent to the spike-timing protocol) with constant postsynaptic depolarization to the synaptic reversal potential (0 V at the stimulated synapses, +8 to +12 mV at the soma). NBQX washout was started after completion of the LTP protocol. (B) Although NBQX blocked the induction of t-LTP in the current clamp, it did not prevent LTP induction in the voltage clamp at the reversal potential. Potentiation of the postsynaptic response relative to baseline in a time window of 50–60 min after onset of pairing is plotted for three experimental conditions.

**Fig. S2.** Wash-in of cyclothiazide (CTZ). (A) Time course of EPSP amplitude in control condition (black, n = 7) and during wash-in of 100 μM CTZ (green, n = 5). Bath application of CTZ increases EPSP amplitude. Example traces show EPSPs before and 30 min after CTZ application. (B) Without pairing, the presence of CTZ did not induce plasticity (n = 4).

**Fig. S3.** Assessing local laser intensity by bleaching of fluorescent dye. (A) To ensure equal stimulation strength in different experiments, we directed a laser pulse to the center of a spine and monitored the amount of bleaching of the red fluorophore (Alexa Fluor 594) before each set of calcium measurements. (B) Fluorescence recovery after photobleaching (FRAP) of the red fluorophore in spine shown in A. (C) Alexa Fluor 594 bleaching was similar under different pharmacological conditions, indicating identical stimulation strength (n = 18, 9, and 18).
Fig. S4. Dendritic calcium transients during pairing stimulation. (A) Spine and dendritic Ca\(^{2+}\) transients in response to uncaging alone, bAPs alone, and uncaging paired with bAPs (\(\Delta t = 6\) ms). Dendritic Ca\(^{2+}\) was measured close to the base of the spine. (B) Peak dendritic Ca\(^{2+}\) amplitudes in response to uncaging alone, bAPs alone, or uncaging paired with bAPs (\(\Delta t = 6, 20,\) and 40 ms; \(n = 16\)). (C) Spine and dendritic Ca\(^{2+}\) transient amplitudes for different spike timings normalized by the linear sum (\(n = 16\)). In the dendrite close to the stimulated spine, both the degree of Ca\(^{2+}\) amplification and the dependence on timing were strongly reduced.

Fig. S5. Effect of glutamate receptor blockers on uncaging-evoked postsynaptic currents and calcium signals. (A) Blocking NMDARs with dCPP (20 \(\mu\)M) did not significantly affect uEPSCs. Blocking AMPARs with NBQX (10 \(\mu\)M) strongly reduced uEPSCs (\(n = 18, 9,\) and 18). (B) Blocking NMDARs with dCPP (20 \(\mu\)M) or AMPARs with NBQX (10 \(\mu\)M) significantly depressed uncaging-evoked spine calcium signals (\(n = 18, 9,\) and 18). *\(P < 0.05\).

Fig. S6. Correlation between calcium nonlinearity and diffusional coupling of spines in organotypic slice cultures. Spines on oblique dendrites of CA1 pyramidal cells were stimulated by two-photon uncaging of MNI-glutamate and FRAP time constants were measured. (A) At \(\Delta t = 5\) ms, the amount of Ca\(^{2+}\) signal amplification was correlated with FRAP time constants (\(R = 0.681, P = 0.001, n = 18\)). (B) At \(\Delta t = 50\) ms, no correlation was observed (\(R = 0.056, P = 0.823, n = 18\)).